Impact of Resistance Training in Cancer Survivors: A Meta-Analysis

BARBARA STRASSER¹, KAREN STEINDORF²,³,⁴, JOACHIM WISKEMANN³,⁴,⁵, and CORNELIA M. ULRICH³,⁴,⁶,⁷

¹Institute for Nutritional Sciences and Physiology, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, AUSTRIA; ²Division of Environmental Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, GERMANY; ³Division of Preventive Oncology, National Center for Tumor Diseases (NCT), Heidelberg, GERMANY; ⁴German Cancer Research Center (DKFZ), Heidelberg, GERMANY; ⁵Division of Medical Oncology, National Center for Tumor Diseases (NCT), University Clinic Heidelberg, Heidelberg, GERMANY; and ⁶Fred Hutchinson Cancer Research Center, Seattle, WA, and ⁷Department of Epidemiology, University of Washington, Seattle, WA

ABSTRACT

STRASSER, B., K. STEINDORF, J. WISKEMANN, and C. M. ULRICH. Impact of Resistance Training in Cancer Survivors: A Meta-Analysis. Med. Sci. Sports Exerc., Vol. 45, No. 11, pp. 2080–2090, 2013. Purpose: Current evidence suggests many health benefits from physical activity during and after cancer treatment. However, the optimal exercise program for cancer survivors has not yet been established. The purpose of this meta-analysis was to summarize evidence for the efficacy of resistance training (RT) interventions to improve muscle strength and body composition among adult cancer survivors. We also investigate potential dose–response relationships between intensity, duration, and frequency of RT and assessed outcomes. Methods: A systematic literature review of the Clinical Trial Register, Cochrane Trial Register, MEDLINE, and EMBASE literature databases was undertaken. Studies were included if they were randomized controlled trials (RCT) comparing RT with an exercise or nonexercise control group in cancer survivors during and after treatment. Thirteen articles from 11 RCT met our inclusion criteria. We performed a random-effects meta-analysis to determine weighted mean differences (WMD) with 95% confidence intervals using the Cochrane Review Manager 5.0.25. A random-effects metaregression model was performed to examine dose–response relationships between RT variables and assessed outcomes. Results: Quantitative evidence shows a large effect of RT on lower-limb and upper-limb muscle strength (WMD: ±14.57 kg, P < 0.0001, ±6.90 kg, P < 0.00001, respectively) and moderate effects on lean body mass and percentage of body fat (WMD: ±1.07 kg, P = 0.0005 and +2.08%, P = 0.0004, respectively). A small positive effect of RT was noted on Functional Assessment of Cancer Therapy–Fatigue (P = 0.042). Conclusions: RT was shown to be associated with clinically important positive effects on muscle function and body composition in patients during treatment or in long-term follow-up. Key Words: CANCER, EXERCISE, STRENGTH TRAINING, MUSCLE FUNCTION, QUALITY OF LIFE, SYSTEMATIC REVIEW

Cancer is the second leading cause of death in the United States, with breast and prostate cancer being the most frequently diagnosed cancers for women and men, respectively, (66). There are numerous side effects to cancer treatment, which often include muscle wasting or atrophy, reduced physical functioning, unfavorable changes in body composition, and depression and fatigue (17). A decrease in physical activity levels associated with other side effects, such as loss of appetite, can intensify muscular wasting and consequently loss of overall body strength, leading patients to experience a negative spiraling effect that further exacerbates the sense of fatigue. This loss of muscular strength together with a reduction in aerobic fitness makes it difficult to perform simple daily activities, significantly compromising the quality of life in cancer patients (37) as well as contributing to increased rates of mortality (27,28). Recent systematic reviews have shown that resistance training (RT) has the power to combat many of the side effects of cancer treatment and, thus, can be of significant benefit to patients in the short and long term (10,15,16).
Benefits include improved muscle strength and physical functioning (73) and reduced fatigue (56), all potentially leading to improved quality of life (40). However, this has so far only been investigated for very few cancer types.

Normal aging is associated with a decline in muscle mass between 5% and 10% each decade after age 50 yr, averaging approximately 0.4 kg of lean weight loss per year after the fifth decade of life (33). Although weight loss occurs in roughly half of cancer patients, cachexia, the weight loss represents a marked loss of predominantly skeletal muscle (58). In cachectic patients, a loss of 25% of body weight represents an approximately 75% reduction in skeletal muscle protein. Approximately 20% of cancer deaths are attributed to cachexia (65).

Numerous studies have demonstrated that relatively brief sessions of regular RT can increase muscle mass in adults of all ages through the 10th decade of life (71). Effects of RT are more pronounced if exercises are muscle site specific, high intensity, and when combined with calcium and vitamin D intake (8,31). Furthermore, RT can provide functional benefits and improvements in overall health and well-being, including increased bone mineral density (BMD) (38), improved physical performance (25,71), and cardiovascular health (63). Therefore, RT may have beneficial effects in cancer patients in terms of reducing muscle wasting or regaining lost muscle mass as well as improving muscle function and a diversity of biomarkers. In turn, this may lead to reduced fatigue levels and an overall enhancement in mental health.

The current systematic review was undertaken 1) to perform a meta-analysis of randomized controlled trials (RCT) regarding the effect of RT on muscle function, body composition, and fatigue both during and after cancer treatment and (2) to investigate the potential for a dose–response relationship between intensity, duration, and frequency of RT and assessed outcomes.

METHODS

Literature search. A systematic literature review of the Clinical Trial Register, Cochrane Trial Register, MEDLINE, and EMBASE literature databases was undertaken to identify relevant studies from earliest record to December 2012. The following key words were used alone, or in various combinations, within the systematic search: cancer, RT, muscle function, muscle strength, body mass, and fatigue. Reference lists from original and review articles were also reviewed to identify additional relevant studies. Only eligible full texts in English were considered for review.

Inclusion and exclusion criteria. All RCT comparing RT with an exercise or nonexercise control group in adult patients with cancer were examined. Participants may have been actively receiving treatment or be in long-term follow-up. Exclusion criteria for this review included the following: (i) studies with single-bout RT interventions; (ii) studies where the intervention was less than 6 wk in duration; (iii) pilot studies; (iv) studies with mere recommendations as intervention, without further detail; (v) studies where the RT was not either directly supervised or well documented; (vi) studies with a clinical cointervention in the experimental group that was not also applied to the control group; and (vii) studies with concomitant endurance training performed for more than 12 min per training session in the experimental group that was not also applied to the control group. Two researchers (B.S. and K.S.) independently performed the literature search, quality assessment, and data extraction. The third author (J.W.) provided additional review and insight. Any disagreements on inclusion of trials were resolved by discussion with the fourth author (C.U.).

The review comprises studies with both male and female adults. RCT with detailed RT prescriptions (relating to type, dose, intensity, frequency, and duration of RT) were included in the review. An inclusion criterion was the evaluation and report of the specific effects of RT on muscle strength and/or body composition. Included studies compared RT with no exercise, a usual care group (i.e., no specific exercise program prescribed), or an alternative treatment or exercise regime. Concentric and eccentric RT was considered for inclusion. On the basis of these criteria, 11 studies (13 publications) were included for review (2,5,12,35,49–51,54–57,73,74).

Assessed outcomes. The primary outcomes of our systematic review were lower-limb and upper-limb muscle strength measured in kilograms. Secondary outcomes included lean body mass (kg), fat mass (kg), percentage of body fat (%) determined by dual energy x-ray absorptiometry scan (DEXA), aerobic capacity measured in peak oxygen uptake ($\dot{V}O_{2\max}$, mL·kg$^{-1}$·min$^{-1}$), or assessed by the 12-min walk test (m). Fatigue was evaluated in this set of studies and assessed by the Functional Assessment of Cancer Therapy–Fatigue (FACT-Fatigue) scale (points) (75).

Data extraction. A standardized data extraction form was developed to extract data from each study in the following areas: study population, intervention, and outcome. The form included the following items: 1) general information, including title, authors, source, setting, and year of publication; 2) trial characteristics, including study design and randomization; 3) characteristics of participants, such as inclusion criteria, exclusion criteria, total number in intervention/control groups, sex distribution, mean age, diagnostic criteria, other baseline characteristics, and dropouts; 4) intervention type, dose, intensity, and frequency as well as duration of the trial; 5) outcomes specified in the methods; and 6) results. For continuous variables, we extracted sample size as well as baseline and postintervention means with SD for the intervention and control groups. There were no dichotomous outcomes. Study characteristics were reported in evidence tables.

Quality assessment. The methodological qualities of RCT included in this review were assessed according to JADAD score (30). This 5-point quality scale includes points for randomization (described as randomized, 1 point; table of random numbers or computer-generated randomization, additional 1 point), double blinding (described as double
RESULTS

Included Studies

After the selection of a total number of 259 full-text articles, 23 publications were considered potentially relevant. The application of all desired inclusion criteria resulted in a final inclusion of 11 RCT reported in 13 publications (2,5,12,35,49–51,54–57,73,74). A flow diagram of search and selection is shown in Figure 1 (see Figure, Supplemental Digital Content 1, http://links.lww.com/MSS/A277, which illustrates the selection process of eligible randomized controlled studies). The predominant reasons for exclusion were as follows: (a) the study had no control group (24,41), (b) studies did not report muscle strength or body composition as an outcome measure (11,34,40,48,69,76), or (c) multiple publication of studies (4,60). Two studies resulted in two publications each (2, 49 and 73, 74, respectively) but reported different strength outcomes and were thus included, although they were considered only as one trial. The characteristics of studies that were included, and detailed descriptions of the exact RT regimes are presented in Table 1.

Participants

The total number of participants included in the analysis of the 11 RCT was 1167 (74% women and 26% men) with 502 participating in an RT intervention, 491 control participants, and a further 174 participants participating in an aerobic endurance training intervention. The latter participants were not included for data extraction and meta-analysis.

Seven studies (reported in nine publications) included only patients with breast cancer (2,5,12,49–51,54,73,74), two included only patients with prostate cancer (56,57), one included only patients with head and neck cancer (35), and the one remaining included patients with different types of cancer (55). Cancer treatments received by participants included various combinations of surgery, radiotherapy, chemotherapy, and androgen-deprivation therapy. Six of the

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Mean Difference (4, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed 2006</td>
<td>37.6 1.3</td>
<td>23</td>
<td>18.1%</td>
</tr>
<tr>
<td>Courneya 2007</td>
<td>31.9 10.8</td>
<td>77</td>
<td>13.5%</td>
</tr>
<tr>
<td>McNeeley 2008</td>
<td>51.4 20.6</td>
<td>27</td>
<td>24.4%</td>
</tr>
<tr>
<td>Schmitz 2009</td>
<td>24.8 2.4</td>
<td>59</td>
<td>14.6%</td>
</tr>
<tr>
<td>Schwartz 2010</td>
<td>24.5 5.4</td>
<td>61</td>
<td>16.3%</td>
</tr>
<tr>
<td>Schwartz 2009</td>
<td>30.1 20.6</td>
<td>30.7</td>
<td>9.7%</td>
</tr>
<tr>
<td>Segal 2009</td>
<td>44.9 13.2</td>
<td>34</td>
<td>6.2%</td>
</tr>
<tr>
<td>Winters-Stone 2012</td>
<td>60.8 14.0</td>
<td>40</td>
<td>1.7%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>378</td>
<td>374</td>
<td>98.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 6.35, Chi² = 37.85, df = 8 (P = 0.00001), I² = 79%

Test for overall effect Z = 6.37 (P = 0.00001)

FIGURE 1—Forest plot showing the results of a meta-analysis as pooled WMD with 95% CI in upper-limb muscle strength (kg) for the nine included randomized controlled RT trials. For each RT trial, the shaded square represents the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of this effect. The area of the shaded square reflects the relative weight of the trial in the meta-analysis. The diamond at the bottom of the graph represents the pooled WMD with the 95% CI for the nine trial groups. Studies included Ahmed et al. (2), Courneya et al. (12), McNeeley et al. (35), Schmitz et al. (50,51), Schwartz et al. (54,55), Segal et al. (57), and Winters-Stone et al. (73).
TABLE 1. Summary of articles included in the meta-analysis.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Aim</th>
<th>Sample Size RT/Control</th>
<th>RT Intervention</th>
<th>Main Outcomes</th>
<th>Main Results RT Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winters-Stone et al. (73)</td>
<td>To evaluate the effects of RT on muscle strength and physical function</td>
<td>N = 67 (RT = 36, control = 31)</td>
<td>3 times per week for 52 wk. 10 RT exercises, 1–3 sets of 8–12 reps at 80% 1RM + impact exercise program with weighted vests</td>
<td>Max muscle strength: 1RM bench press/leg press; fatigue (CFS); physical function</td>
<td>Significant improvements in maximal muscle strength in the RT group compared with controls at 52 wk. RT did not improve fatigue</td>
</tr>
<tr>
<td>Winters-Stone et al. (74)</td>
<td>To evaluate the effects of RT on BMD, body composition</td>
<td>N = 67 (RT = 36, control = 31)</td>
<td>3 times per week for 52 wk. 10 RT exercises, 1–3 sets of 8–12 reps at 80% 1RM + impact exercise program with weighted vests</td>
<td>Max muscle strength: 1RM bench press/leg press; fatigue (CFS); physical function</td>
<td>Women in the RT group preserved BMD at the lumbar spine compared with controls at 52 wk. RT significantly increased LBM among women currently taking AI compared with controls not on this therapy</td>
</tr>
<tr>
<td>Schmitz et al. (50)</td>
<td>To evaluate the effects of RT on lymphedema onset, muscle strength, and body composition</td>
<td>N = 133 (RT = 69, UC = 63 for muscle strength; RT = 65, UC = 68 for body mass)</td>
<td>2 times per week for 52 wk. 10 RT exercises, 3 sets of 10 reps; weight gradually increased</td>
<td>BCRL: >5% increase arm swelling; muscle strength: 1RM bench press/leg press; body comp: BF%, FM, LBM</td>
<td>RT did not result in increased incidence of BCRL compared with controls at 52 wk. Significant improvements in muscle strength and body fat compared with controls at 52 wk</td>
</tr>
<tr>
<td>Schmitz et al. (51)</td>
<td>To evaluate the effects of RT on limb swelling, muscle strength, and body composition</td>
<td>N = 129 (RT = 52, UC = 63 for muscle strength; RT = 65, UC = 64 for body mass)</td>
<td>2 times per week for 52 wk. 10 RT exercises, 3 sets of 10 reps; weight gradually increased</td>
<td>BCRL: >5% increase arm swelling; muscle strength: 1RM bench press/leg press; body comp: BF%, FM, LBM</td>
<td>RT had no significant effect on limb swelling and resulted in a decreased incidence of exacerbations of lymphedema at 52 wk. Further, significant improvements in muscle strength compared with controls</td>
</tr>
<tr>
<td>Schwartz et al. (55)</td>
<td>To evaluate the effects of RT or AET on aerobic capacity, muscle strength, and body composition</td>
<td>N = 101 (RT = 34, AET = 34, UC = 33)</td>
<td>4 times per week for 52 wk. 6 RT exercises, 3 sets of 12 reps or 2 sets of 18-20 reps; weight increased gradually</td>
<td>Max muscle strength: 1RM leg extension/seat row; 12-MWT; body comp: BF%</td>
<td>Significant improvements in muscle strength and aerobic capacity in the RT and AET group compared with UC. BF% significantly increased in the UC group compared with AET and RT at 52 wk</td>
</tr>
<tr>
<td>Segal et al. (57)</td>
<td>To evaluate the effects of RT or AET on fatigue, QOL, physical fitness, body composition, PSA, testosterone, lipids, and hemoglobin</td>
<td>N = 121 (RT = 40, AET = 40, UC = 41)</td>
<td>3 times per week for 24 wk. 10 RT exercises, 2 sets of 8–12 reps at 60%–70% 1RM</td>
<td>Muscle strength: 8-RM leg press/8-RM chest press; VO2max; body comp: BF%, QOL, fatigue (FACT)</td>
<td>Significant improvements in muscle strength, aerobic fitness, QOL, fatigue, and prevented body fat increases compared with usual care at 24 wk</td>
</tr>
<tr>
<td>McNeely et al. (35)</td>
<td>To evaluate the effects of RT on upper extremity pain and dysfunction</td>
<td>N = 52 (RT = 27, UC = 25)</td>
<td>2 times per week for 12 wk. 5–8 RT exercises, 2 sets of 10–15 reps, starting at 25%–30% 1RM progressing to 60%–70% 1RM</td>
<td>Max muscle strength: 1RM chest press/seat row; QOL; shoulder pain, ROM; fatigue (FACT)</td>
<td>Shoulder pain and muscle strength significantly improved after RT compared with usual care at 12 wk. QOL and fatigue showed nonsignificant improvements with RT compared with control</td>
</tr>
<tr>
<td>Battaglini et al. (5)</td>
<td>To evaluate the effects of RT on body composition</td>
<td>N = 20 (RT = 10, control = 10)</td>
<td>2 times per week for 24 wk; 8–12 RT exercises, 3 sets of 6–12 reps at 40%–60% 1RM</td>
<td>Body composition: BF%, LBM%; muscle strength</td>
<td>Significant improvements in percent body fat, lean body mass, and muscle strength in the RT group compared with controls</td>
</tr>
<tr>
<td>Courneya et al. (12)</td>
<td>To evaluate the effects of RT or AET on physical fitness, body composition, QOL, and fatigue</td>
<td>N = 242 (RT = 82, AET = 78, UC = 82)</td>
<td>3 times per week for the duration of CHT (9–24 wk). 9 RT exercises, 2 sets of 8–12 reps at 60%–70% 1RM</td>
<td>Max muscle strength: 1RM bench press/leg press; VO2max; body comp: BF%, FM, LBM; QOL; fatigue (FACT)</td>
<td>RT was superior to usual care for improving muscular strength, LBM, and CHT completion rate. RT did not significantly improve cancer-specific QOL and fatigue</td>
</tr>
<tr>
<td>Schwartz et al. (54)</td>
<td>To evaluate the effects of RT or AET on BMD</td>
<td>N = 66 (RT = 21, AET = 22, UC = 23)</td>
<td>4 times per week for 24 wk. 8 RT exercises, 2 sets of 8–10 reps weight increased gradually</td>
<td>Max muscle strength: 1RM leg extension/seat row; 12-MWT, BMD</td>
<td>Significant improvements in muscle strength and aerobic capacity in the RT and AET group compared with UC. Weight-bearing AET preserved BMD significantly better compared with RT and UC at 24 wk</td>
</tr>
<tr>
<td>Ahmed et al. (2)</td>
<td>To evaluate the effects of RT on lymphedema onset or exacerbation and muscle strength</td>
<td>N = 45 (RT = 23, control = 22)</td>
<td>2 times per week for 24 wk. 9 RT exercises, 3 sets of 8–10 reps weight increased gradually</td>
<td>BCRL: >2% increase arm circumferences; max muscle strength: 1RM bench press/leg press</td>
<td>RT did not increase the risk for symptoms of lymphedema and resulted in significant improvements in muscle strength compared with controls at 24 wk</td>
</tr>
<tr>
<td>Schmitz et al. (49)</td>
<td>To evaluate the effects of RT on body size and biomarkers (glucose, insulin, IGF axis variables)</td>
<td>N = 81 (RT = 40, control = 41)</td>
<td>2 times per week for 24 wk. 9 RT exercises, 3 sets of 8–10 reps weight increased gradually</td>
<td>Body composition: BF%, FM, LBM; biomarkers: glucose, insulin, HOMA, IG axis variables.</td>
<td>Significant improvements in LBM, BF% and IGF-II compared with controls at 24 wk</td>
</tr>
<tr>
<td>Segal et al. (56)</td>
<td>To evaluate the effects of RT on QOL and fatigue</td>
<td>N = 155 (RT = 82, control = 73)</td>
<td>3 times per week for 12 wk. 9 RT exercises, 2 sets of 8–12 reps at 60%–70% 1RM</td>
<td>QOL; fatigue (FACT); muscular fitness</td>
<td>Significant improvements in QOL, fatigue, and muscular fitness in the RT group compared with controls at 12 wk</td>
</tr>
</tbody>
</table>

ADT, androgen deprivation therapy; AET, aerobic endurance training; AI, aromatase inhibitor; BCRL, breast cancer–related lymphedema; BF%, % body fat; BMD, bone mineral density; CFS, Schwartz cancer fatigue scale; CHT, chemotherapy; FACT, Functional Assessment of Cancer Therapy; FM, fat mass; HOMA, homeostatic model assessment; IGF, insulin-like growth factor; LBM, lean body mass; RAT, radiation therapy; RM, repetition maximum; ROM, range of motion; RT, resistance training; UC, usual care; VO2max, peak oxygen uptake; QOL, quality of life; 12-MWT, 12-min walk test.
epidemiology

The diamond at the bottom of the graph represents the pooled WMD with the 95% CI for the four study groups. Studies included Courneya et al. (12), McNeely et al. (35), and Segal et al. (56,57).

Interventions

The duration of interventions ranged from 12 wk in two studies (35,56), 4–6 months in four studies (five papers) (2,5,49,54,57), and 1 yr in four studies (five papers) (50,51,55,73,74). One intervention was delivered throughout chemotherapy and had a mean duration of 17 ± 4 wk (12). Most interventions involved two (2,5,35,49–51) or three (12,56,57,73,74) training sessions per week, with RT occurring on nonconsecutive days. Two studies involved four sessions per week (54,55). The percentage of the 1RM or 10- to 15-repetition maximum (10–15RM) were scales used to define the intensity of RT. One set consisted of 10–15RM without interruption, until severe fatigue occurred and completion of further repetitions was impossible. The training load was systematically adapted to keep the maximum possible repetition per set between 10 and 15; 10–15RM is equivalent to 70%–80% 1RM for most exercises (72). The mean intensity of the interventions ranged from 50% 1RM (5) to 80% 1RM (73,74). The maximum number of sets for each muscle group per week (S/MG/W) at the end of the intervention program ranged from 4 S/MG/W (35) to 12 S/MG/W (55). The most common dose of RT at the end of the intervention was 6 S/MG/W. RT on a weight machine was most commonly used for progressive RT. In most studies, the RT program consisted of exercises for all major muscle groups. Exercises to strengthen the upper body included bench press (pectoralis), chest cross (horizontal flexion of the shoulder joint), shoulder press (trapezius), pulldowns (latissimus dorsi), bicep curls, tricep extensions, and exercises for abdominal joint), shoulder press (trapezius), pulldowns (latissimus dorsi), metric jumps (73,74).

Ten of 11 studies measured muscle strength, involving a total of 958 participants (2,5,12,35,50,51,54,55,57,73). Of these, 391 received the RT intervention. Of 11 studies, 8 reported results for percentage of body fat (5,12,49–51,55,73,74), 5 for fat mass (12,49–51,74), and 6 for lean body mass (5,12,49–51,74). Peak oxygen uptake (V\textsubscript{˙O}max) and results for the 12-min walk test were reported in two studies each (12, 57 and 54, 55, respectively). Four of the studies provided data on FACT-Fatigue (12,37,58,59).

Figure 1 shows the results from each study group for upper-limb muscle strength, and Figure 2 shows the results for FACT-Fatigue change (WMD point estimate and 95% CI) in response to RT (graphically displayed as a forest plot). Table 2 summarizes the pooled results for all considered intervention effects. The meta-analysis demonstrated that the pooled effect of RT on lower-limb and upper-limb muscle strength was a significant weighted mean increase of 14.57 kg (95% CI = 6.34–22.80 kg, \(P = 0.0005 \)) and 6.90 kg (95% CI = 4.78–9.03 kg, \(P < 0.0001 \)), respectively. There were no significant differences between the RT group and the control group in V\textsubscript{˙O}max (WMD: 0.97 mL kg-1 min-1, 95% CI = −0.53 to 2.47 mL kg-1 min-1, \(P = 0.20 \)), although the improvement in the 12-min walk test with RT was statistically significant (WMD: 143.7 m, 95% CI = 70.5–216.8 m, \(P = 0.0001 \)). The percentage of body fat was reduced by 2.08%, which is statistically significant (95% CI = −3.46 to −0.70%, \(P = 0.003 \)). There were no significant differences between the RT group and the control group in body fat mass (WMD: −0.83 kg, 95% CI = −1.87 to 0.21 kg, \(P = 0.12 \)). The change in lean body mass with RT was statistically significant (WMD: 1.07 kg, 95% CI = 0.76–1.37 kg, \(P < 0.0001 \)). This meta-analysis showed a significant improvement in FACT-Fatigue with RT (WMD: 1.86 points, 95% CI = −0.03 to 3.75 points, \(P = 0.05 \)). We performed sensitivity analysis of pooled data in patients who had completed treatment for cancer in contrast to subjects during cancer treatment. RT resulted in a superior improvement in lower-limb muscle strength in the cancer survivor group (WMD: 18.24 kg, 95% CI = 7.16–29.32 kg, \(P = 0.001 \)) compared with the during-treatment group (WMD: 9.38 kg, 95% CI = 3.46 to 15.31 kg, \(P = 0.001 \)), 5 for fat mass (12,49–51,55,73,74), and 6 for lean body mass (5,12,49–51,74). Peak oxygen uptake (V\textsubscript{˙O}max) and results for the 12-min walk test were reported in two studies each (12, 57 and 54, 55, respectively). Four of the studies provided data on FACT-Fatigue (12,37,58,59).

Figure 1 shows the results from each study group for upper-limb muscle strength, and Figure 2 shows the results for FACT-Fatigue change (WMD point estimate and 95% CI) in response to RT (graphically displayed as a forest plot). Table 2 summarizes the pooled results for all considered intervention effects. The meta-analysis demonstrated that the pooled effect of RT on lower-limb and upper-limb muscle strength was a significant weighted mean increase of 14.57 kg (95% CI = 6.34–22.80 kg, \(P = 0.0005 \)) and 6.90 kg (95% CI = 4.78–9.03 kg, \(P < 0.0001 \)), respectively. There were no significant differences between the RT group and the control group in V\textsubscript{˙O}max (WMD: 0.97 mL kg-1 min-1, 95% CI = −0.53 to 2.47 mL kg-1 min-1, \(P = 0.20 \)), although the improvement in the 12-min walk test with RT was statistically significant (WMD: 143.7 m, 95% CI = 70.5–216.8 m, \(P = 0.0001 \)). The percentage of body fat was reduced by 2.08%, which is statistically significant (95% CI = −3.46 to −0.70%, \(P = 0.003 \)). There were no significant differences between the RT group and the control group in body fat mass (WMD: −0.83 kg, 95% CI = −1.87 to 0.21 kg, \(P = 0.12 \)). The change in lean body mass with RT was statistically significant (WMD: 1.07 kg, 95% CI = 0.76–1.37 kg, \(P < 0.0001 \)). This meta-analysis showed a significant improvement in FACT-Fatigue with RT (WMD: 1.86 points, 95% CI = −0.03 to 3.75 points, \(P = 0.05 \)). We performed sensitivity analysis of pooled data in patients who had completed treatment for cancer in contrast to subjects during cancer treatment. RT resulted in a superior improvement in lower-limb muscle strength in the cancer survivor group (WMD: 18.24 kg, 95% CI = 7.16–29.32 kg, \(P = 0.001 \)) compared with the during-treatment group (WMD: 9.38 kg, 95% CI = 3.46 to 15.31 kg, \(P = 0.001 \)).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courneya 2007</td>
<td>36.3</td>
<td>9.4</td>
<td>76</td>
<td>34.9</td>
<td>12.5</td>
<td>73</td>
<td>28.2%</td>
<td>1.49</td>
<td>[1.26, 1.88]</td>
</tr>
<tr>
<td>McNeely 2008</td>
<td>36.7</td>
<td>9</td>
<td>27</td>
<td>34.3</td>
<td>11.1</td>
<td>25</td>
<td>11.8%</td>
<td>2.40</td>
<td>[2.13, 2.91]</td>
</tr>
<tr>
<td>Segal 2003</td>
<td>41.6</td>
<td>10.5</td>
<td>92</td>
<td>40.3</td>
<td>9.4</td>
<td>73</td>
<td>36.5%</td>
<td>1.30</td>
<td>[1.03, 1.58]</td>
</tr>
<tr>
<td>Segal 2009</td>
<td>45.1</td>
<td>9.1</td>
<td>40</td>
<td>42.1</td>
<td>8.8</td>
<td>41</td>
<td>23.5%</td>
<td>3.00</td>
<td>[2.90, 3.15]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>36.9</td>
<td>10.5</td>
<td>124.5</td>
<td>34.9</td>
<td>11.1</td>
<td>118.2</td>
<td>28.2%</td>
<td>1.87</td>
<td>[1.66, 2.08]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau2 = 0.00, Chi2 = 0.55, df = 3 (\(P = 0.91 \)), I2 = 0% Test for overall effect: Z = 1.92 (\(P = 0.05 \))

FIGURE 2—Forest plot showing the results of a meta-analysis as pooled WMD with 95% CI in FACT-Fatigue (points) for the four included randomized controlled RT studies. For each RT trial, the shaded square represents the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of this effect. The area of the shaded square reflects the relative weight of the study in the meta-analysis. The diamond at the bottom of the graph represents the pooled WMD with the 95% CI for the four study groups. Studies included Courneya et al. (12), McNeely et al. (35), and Segal et al. (56,57).
95% CI = 4.22–14.54 kg, \(P = 0.0004 \). Otherwise, the percentage of body fat was reduced by a statistically significant 4.0% (95% CI = 5.51 to 2.50%, \(P \leq 0.00001 \)) during treatment compared with 0.87% (95% CI = 2.18 to 0.48%, \(P = 0.19 \)) after treatment. Aerobic capacity, body fat mass, lean body mass, and fatigue were not affected by the cancer treatments received by participants.

Additional Outcomes

BMD. Two studies assessed BMD as an outcome (54,74). In one study, women in the RT group preserved BMD at the lumbar spine at 52 wk compared with controls (74), whereas another study showed a significant better preservation of BMD with weight-bearing aerobic endurance training compared with RT and usual care at 24 wk (54).

Tumor-specific outcomes. Three studies that investigated the effects of RT on limb swelling and lymphedema onset in breast cancer survivors reported either no increase in incidence of breast cancer-related lymphedema (2,50) or a decreased incidence of exacerbations of lymphedema (51). Both studies that recruited participants with prostate cancer reported no significant differences between the RT group and the control group in terms of testosterone levels (56,57). One study aimed to evaluate the effects of RT on shoulder pain and dysfunction in people with head and neck cancer and reported beneficial effect on shoulder function (35).

Quality of life. Four studies assessed quality of life (QOL) as an outcome (12,35,56,57). Two studies demonstrated a significantly beneficial effect of RT on QOL compared with usual care (56,57). Two other studies reported trends for improved QOL in the RT group compared with the control group (12,35).

Study Quality

All selected trials were described as randomized. No trials reported significant differences in participant characteristics at the outset of the intervention (baseline). The median score for quality was 4, ranging from 3 to 5 (see Table, Supplemental Digital Content 2, http://links.lww.com/MSS/A278, which illustrates methodological quality of included RT trials). Four RCT (five publications) met all the quality criteria (35, 56, 57, 73, 74). The second methodological assessment criterion (blinding of the intervention) was not assessed as a quality criterion because blinding was not possible in this context. However, an additional point was given if the blinding of the study assessors was reported. The blinding of the outcome assessors was fulfilled in seven RCT (nine publications) (2, 35, 49–51, 56, 57, 73, 74). A review of the third methodological criteria demonstrated that drop-outs were reported in all studies. Drop-outs in the intervention group ranged from 0% in one study (5), 5%-10% in six studies (seven publications) (2,12,35,49,51,54,56), 11%-20% in three studies (50,55,57), to 30% in one study (reported in two publications) (73,74). Compliance with exercise, on the other hand, was between 60% and 80% in six studies (seven papers) (12,50,54–56,73,74), 90% in three studies (four papers) (2,49,51,57), and more than 90% in two trials (5,35).

![FIGURE 3—Bubble plot showing the dose-response relationship between the mean intensity (percentage of the 1RM) of RT intervention and effect size changes for upper limb muscle strength (kg) for the nine included randomized controlled RT trials (\(P = 0.042 \)). For one single continuous variable, the fitted regression line together with circles representing the estimates from each trial, sized according to precision of each estimate in the fitted random-effects metaregression. Studies included Ahmed et al. (2), Courneya et al. (12), McNeely et al. (35), Schmitz et al. (50,51), Schwartz et al. (54,55), Segal et al. (57), and Winters-Stone et al. (73).](image-url)
Heterogeneity and Dose–Response Relationship

We found heterogeneity across trials concerning some outcomes, that is, upper limb muscle strength ($I^2 = 79\%$), lower-limb muscle-strength ($I^2 = 91\%$), and percentage of body fat ($I^2 = 74\%$) (Table 2).

Metaregression revealed no statistically significant dose–response relationship between volume of RT at the end of the intervention program and effect size changes. The main factor that explained part of the heterogeneity was for one outcome duration and intensity of RT with a significant negative impact on upper limb muscle strength (decline in values) with increasing intensity ($P = 0.042$). We noted a significant positive impact on percentage of body fat (smaller effect size) with increasing intensity of RT ($P = 0.02$). Figures 3 and 4 show the dose–response relationship between intensity of RT and changes in effect size for upper limb muscle strength and percentage of body fat, respectively (graphically displayed as a bubble plot).

DISCUSSION

This meta-analysis was designed to investigate the effects of progressive RT on muscle strength and body composition in adult cancer patients. RT interventions resulted in a statistically significant improvement in muscle strength compared with controls. The increase of 14.6 kg for lower limb muscle strength (nine trials) and 6.9 kg for upper limb muscle strength (nine trials) was achieved during periods between 12 wk and 1 yr and compares well with reported improvements achieved in healthy elderly (61). The clinical significance of muscle strength for healthy adult and cancer survivors can be gauged by evaluating cross-sectional and longitudinal studies examining direct measurement of muscle strength in association with morbidity (3,29) and mortality (39,46). The Health, Aging, Body Composition Study showed mortality to be associated with both lower limb and upper limb muscle strength, and this association remained significant even after adjustment for lean body mass (39). For quadriceps strength (per SD of 3.8 kg), the crude hazard ratio for men was 1.51 (95% CI = 1.128–1.79) and 1.65 (95% CI = 1.19–2.30) for women (29). Furthermore, the Aerobic Center Longitudinal Study noted that higher levels of muscular strength (10.7 kg for leg press and 7.7 kg for bench press) were associated with 35% reduced cancer mortality in men, independent of body fat and cardiorespiratory fitness (46). Thus, the significant gain in muscle strength achieved in our review may increase life expectancy in cancer patients considerably. Although we found no significant differences between the RT group and the control group in $\overline{V}O_2$ (\max) (two trials), the improvement in $\overline{V}O_2$ (\max) was 9.1 wk in healthy aging adults. Thus, RT twice a week increases muscle mass by 1–2 kg per 6 months and could prevent age-associated loss of muscle mass in both healthy adults (38) and patients with chronic disease (62). In our meta-analysis, an RT intervention resulted in a significant lowering of percentage of body fat by 2.08% (eight trials) compared with the controls, but there was no significant difference between groups in body fat mass ($\sim 0.8%$). The observed between-group effect sizes in body fat are similar to the effect sizes observed with aerobic training in adult patients after completion of main cancer treatment ($\sim 0.8%$, -1.5 kg) (22). This result is not unimportant because already small reductions in body fat mass (1.5 kg) are associated with reductions in plasma lipid peroxidation (68). Oxidative stress may be related to cancer prognosis and is closely associated with mitochondrial dysfunction, cytokine dysregulation, and disruptions in muscle metabolism, and all of them have been postulated as mechanistic underpinnings of cancer-related fatigue (47). RT increases muscle protein synthesis (45), improves cytokine response (44), and diminishes atrophy (21). Furthermore, reduced body fat may also impact cancer prognosis as there is some evidence for a positive association between body fat and increased cancer-related mortality or recurrence (67).

On the basis of this meta-analysis, an RT intervention resulted in a significant reduction in FACT-Fatigue (four trials) compared with controls. The pooled results of the four studies examining the effect of RT on symptoms of fatigue.
showed a small effect; however, statistically significant improvements in symptoms of fatigue were reported in only two studies (56,57). One study used the Schwartz cancer fatigue scale and noted no improvements in fatigue with RT (73). The observed 1.9-point improvement in FACT-Fatigue with RT was lower than the 3.0-point threshold for minimal clinically important differences (9). Only four meta-analyses have concluded that physical activity had significant effects on reducing fatigue in cancer survivors (6,13,14,59).

They reported at least small effects of physical activity. Cramp and Daniel (13) identified in their recent systematic review significant benefits of aerobic endurance training on cancer-related fatigue but RT failed to reach significance. Interestingly, Brown et al. (6) reported that RT had a positive, quadratic, and exercise intensity dose–response effect on cancer-related fatigue. Exercise reduced fatigue especially in programs that involved RT exercise among adult cancer survivors and that were of moderate to high intensity (60%–80% 1RM) (6). Thus, the intensity of exercise could play an important role in its effects. Fong et al. (22) reported significantly larger effects of aerobic plus RT than aerobic training alone on cancer-related fatigue that might indicate a potential benefit of higher intensity. In one study by Segal et al. (57), improvements in fatigue were associated with improvements in upper-body strength, but nothemoglobin. This suggests that RT may improve fatigue by improving neuromuscular efficiency and reducing muscular fatigue.

How much RT is needed? Considering the benefits of RT on muscle function, body composition, and cancer-related fatigue, an important question is, how much RT (duration, intensity, and volume) is needed to confer such benefits? On the basis of this analysis, metaregression revealed no statistically significant dose–response relationship between the volume of RT and the effect size changes in assessed outcomes. For example, improvements in muscle strength were observed after low volume (4 S/MG/W) (35), moderate volume (6 S/MG/W) (12,57), and high volume (10 S/MG/W) (55) of RT. This is in accordance with data from a recent meta-analysis investigating the effectiveness of RT for strength improvement among adults ≥50 yr (42). However, we observed a significant negative impact on upper limb muscle strength with increasing intensity of RT intervention and a tendency toward a negative impact on upper limb muscle strength with increasing study duration. A possible reason might be a diminished increase in cross-sectional area per day with increasing length of the training period (70). Muscle size shows significant changes after 8–12 wk of regular RT (1). This adaptation appears to proceed in a linear manner during the first 6 months of training (36). It is intuitive that the growth of skeletal muscle must slow or plateau eventually, and at some point, further RT would provide no additional benefit or treatment effect. On the basis of current data, it appears that to facilitate progressive adaptation in muscle mass and strength, it is necessary to increase the prescription dosage as individuals become more familiarized with training (42). On the basis of our meta-analysis, prescription dosage (sets per muscle group per week) did not progressively increase over time in most studies. The only “progression” in training prescription was that of the absolute training load. It is therefore conceivable that the lack of increase in dosage may be the reason behind the negative impact on upper limb muscle strength with increasing study duration.

We observed a significant negative impact on upper limb muscle strength with increasing intensity. Metaregression revealed that low/moderate-intensity RT (≤75% 1RM) was associated with greater improvement than moderate/high-intensity RT (>75% 1RM). These data beg the question, how low can the RT intensity be and still produce a physiological adaptation and functional benefit? A recent study in healthy young adults showed that low-load high-volume leg RT to failure (30% 1RM) was more effective at increasing muscle protein synthesis than high-load low-volume RT to failure (90% 1RM) (7). Thus, RT-induced muscle protein synthesis may not necessarily be intensity dependent but may instead be determined by exercise volume. This would be important news for cancer patients who may be unable to sustain lifting weights at a relative high intensity due to sarcodepc comorbidities, such as connective tissue complications.

Although our metaregression suggests that moderate-intensity RT may be more effective than high-intensity for body fat loss, it is important to remember that the scientific evidence suggest only a modest effect of RT on body fatness and this may be influenced by whether the resistance exercise is accompanied by a concurrent reduction in energy intake (19). RT without energy restriction does not show clinically significant decreases in body weight; however, data show that RT may be an effective alternative to improve body composition in the short-term and long-term (1–2 kg loss of body fat with 1–2 kg increase in lean body mass) (18).

On the basis of our review, an RT intervention resulted in a significant improvement in FACT-Fatigue in studies reporting muscle strength or body composition as primary outcome measure. However, there was no evidence for associations between total exercise volume or mean intensity and beneficial effects on cancer-related fatigue. Although a recent meta-analysis conducted by Brown et al. demonstrated the superiority of higher intensity RT for fatigue reduction (6), no study has examined RT interventions greater than 80%1RM. It remains unknown whether more vigorous-intensity RT would provide greater or lesser reductions in cancer-related fatigue. For the current analysis, it is conceivable that the limited number of study groups and the overall lack of substantial variability in training regimens across intervention trials may have limited our analyses. Thus, further research is required to determine the optimal type and intensity of an exercise intervention on fatigue.

Strengths and limitations. Our study has several strengths. To our knowledge, this is the first systematic review to assess the association between dose of RT with changes in muscle strength, body composition, and fatigue both during and after cancer treatment. We included only...
CONCLUSIONS

The optimal exercise program for adult cancer survivors has not yet been established. Current exercise guidelines for cancer survivors emphasize the importance of participating in aerobic exercise, complemented with resistance and flexibility exercises and often make no or minimal mention of RT (20,52). Although some recent reviews (10,15,16) analyzed the effectiveness of RT in cancer survivors and suggested some positive effects of RT programs on muscle function and quality of life, this is the first investigation of the pooled effects of RT using meta-analysis. Because the dose–response relationship of RT for cancer patients has not yet been clarified, we lack clear recommendations for optimal RT. Findings from this meta-analysis support whole body RT as an appropriate training modality 1) to increase muscle strength in cancer patients and 2) to improve body composition in the short and long-term. However, whole-body RT is essential for correcting muscular deficiencies seen in the cancer patients, the use of weights for upper body RT is strongly recommended to improve pain, disability, and range of shoulder movements in patients treated for breast or head and neck cancer. Overall, chronic RT is well tolerated in adult cancer patients. None of the included studies reported significant adverse effects. Only one patient with head and neck cancer experienced increased pain as a result of soft-tissue injury to the scapular region due to RT (35). The optimal frequency for RT appears to be 2 d wk⁻¹. The intensity of RT could play an important role in its effects. Our analysis suggests that low- to moderate-intensity RT (≤75%1RM) be performed to fatigue may promote equivalent gains in lean body mass and strength as moderate to high-intensity RT. Furthermore, there is now good evidence that low- to moderate-intensity RT is equally or even more effective at lowering percentage of body fat than is high-intensity RT. The intensity should be such that fatigue results after 12–17 repetitions, corresponding to 60%–70% 1RM (72). A minimum of two sets per muscle group per week should be performed at the beginning of the program and be increased progressively to a maximum of six sets per muscle group per week. On the basis of this analysis of dose–response evidence, there is little to suggest that a greater number of RT sets will yield greater improvements in muscle function, body composition, and fatigue in cancer survivors.

In conclusion, on the basis of our review of 11 RCT in adult cancer patients, RT was associated with clinically important positive effects on muscular function and body composition in patients during treatment or in long-term follow-up without causing significant adverse events. These benefits were observed among patients with breast cancer, prostate cancer, and head and neck cancer. Additional RCT among patients with other cancer types such as gynecological, colorectal, gastric, and lung cancer are needed to further assess the efficacy of RT on health-related outcomes. The implications of these results on cancer recurrence or survival may become more evident with physical activity intervention trials of longer duration among cancer survivors.

The authors declare no funding and no conflict of interest.

The results of the present study do not constitute endorsement by the American College of Sports Medicine.

REFERENCES

RESISTANCE TRAINING IN CANCER

EPIDEMIOLOGY